哲学杂志철학 학술지哲学のジャーナルEast Asian
Journal of
Philosophy

Home > Journal > Journal Issue > Journal article

Publication details

Year: 2018

Pages: 5007-5019

Series: Synthese

Full citation:

Jesse Butler, "An entirely non-self-referential Yabloesque paradox", Synthese 195 (11), 2018, pp. 5007-5019.

Abstract

Graham Priest (Analysis 57:236–242, 1997) has argued that Yablo’s paradox (Analysis 53:251–252, 1993) involves a kind of ‘hidden’ circularity, since it involves a predicate whose satisfaction conditions can only be given in terms of that very predicate. Even if we accept Priest’s claim that Yablo’s paradox is self-referential in this sense—that the satisfaction conditions for the sentences making up the paradox involve a circular predicate—it turns out that there are paradoxical variations of Yablo’s paradox that are not circular in this sense, since they involve satisfaction conditions that are not recursively specifiable, and hence not recognizable in the sense required for Priest’s argument. In this paper I provide a general recipe for constructing infinitely many (in fact, continuum-many) such noncircular Yabloesque paradoxes, and conclude by drawing some more general lessons regarding our ability to identify conditions that are necessary and sufficient for paradoxically more generally.

Cited authors

Publication details

Year: 2018

Pages: 5007-5019

Series: Synthese

Full citation:

Jesse Butler, "An entirely non-self-referential Yabloesque paradox", Synthese 195 (11), 2018, pp. 5007-5019.