

Explanatory reasoning
a probabilistic interpretation
pp. 445-461
in: Juan Redmond, Olga Pombo Martins, Angel Fernández (eds), Epistemology, knowledge and the impact of interaction, Berlin, Springer, 2016Abstract
This paper deals with inference guided by explanatory considerations –specifically with the prospects for a probabilistic interpretation of it. After pointing out some differences between two sorts of explanatory reasoning – i.e.: abduction and "inference to the best explanation" – in the first section I distinguish two tasks: (a) to discern which explanation is the best one; (b) to assess whether the best explanation deserves to be legitimately believed. In Sect. 20.2 I discuss some recent definitions of explanatory power based on "reduction of uncertainty" (Schupbach and Sprenger 2011; Crupi and Tentori 2012). Even though a probabilistic framework is a promising option here, I will argue that explanatory power so defined is not a convincing characterization of what makes a particular hypothesis better, from an explanatory point of view, that an alternative option. Then, in Sect. 20.3 I will suggest a sufficient condition (rule R1*) as my answer to (a). Regarding (b) I will propose a probabilistic threshold as a minimal condition for entitlement to believe (Sect. 20.4). The rule R1* and the threshold condition are intended as a partial explication of explanatory value (and, consequently, also as a partial explication of "inference to the best explanation").